

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 98

Implementation of Huffman Encoding for Modified RSA-AES

Encrypted Token Compression in Secure Banking Transactions

1Hamidu M.

mohammedhamidu1987@gmail.com

Department of computer Science, Adamawa State University, Mubi.

Adamawa State, Nigeria

2Sarjiyus O.

Department of computer Science, Adamawa State University, Mubi.

Adamawa State, Nigeria

3Manga I.

Department of computer Science, Adamawa State University, Mubi.

Adamawa State, Nigeria

DOI: 10.56201/ijcsmt.vol.11.no3.2025.pg.98.128

Abstract

This research Huffman encoding for modified RSA-AES encrypted token compression in secure

banking transactions aims to improve the security strength of customer banking credentials in

transit and at rest by modifying the RSA token generation stage of encryption. These tokens are

not original banking credentials but 32-bit decryption keys of AES. This modification will be made

possible by using SHA-256 token generation for its historic strength and resistant to brute-force

attack. This approach may hinder a serious computational overheat and time-space complexity.

However, we propose the use of Huffman encoding with its quicker data compression to overcome

the data size intricacy.

Keyword: SHA-256, avalanche effect, Huffmann Encoding, Entropy, overheat

INTRODUCTION

Securing banking transactions have become increasingly challenging in today's digitally connected

world where financial data is constantly being transmitted over various networks. The potential

risks associated with data breaches and unauthorized access to sensitive information have made

encryption and data compression essential components of modern banking systems (Haryaman et

al 2024). Securing sensitive customer banking tokens like credit card numbers and account

credentials is also essential (Agur et al 2020). As more transactions and communications occur

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 99

digitally, banks and other financial institutions must ensure customer’s data is protected during

storage and transmission (Javaid et al 2022). Currently, many payment networks and banking

systems use AES a symmetric encryption standard to protect tokens and data in transit and at rest.

AES applies cipher block chaining (CBC) and other techniques to encrypt plain text data into

uncomprehensible ciphertexts (Altigani et al 2021).

AES is widely used globally to protect classified information (Smid, 2021). AES was chosen to

replace the older Data Encryption Standard (DES) which was vulnerable to brute force attacks by

National Institute of Standards and Technology (NIST) in 2001 after a 5-year standardization

process, it is considered very difficult to crack through brute force attacks. AES transforms plain

text data into fixed block sizes of ciphertexts and encryption keys. AES provides very high security

against known attacks with its multiple round structure and large secret key sizes. It encrypts and

decrypts data in fixed block sizes of 128 bits using cryptographic keys of 128-bits, 192-bits or 256-

bits (Kishor Kumar et al 2024). It applies substitution, permutation and transformation techniques

in multiple rounds to convert plaintext to ciphertext and back. Each round uses different keys

derived from the original key using key scheduling algorithms. The number of rounds depends on

the key size - 10 rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit

keys. The more rounds used, the more secure the AES encryption is against attacks. Analysing

AES encrypted data without knowing the original key is extremely difficult given the complexity

of reverse engineering the multiple substitution, permutation and transformation rounds. Brute

force attacks trying all possible key combinations also become infeasible as key sizes grow larger

(Andersson, 2023). No effective cryptographic attacks against AES itself are publicly known so

far (Grassi et al 2021). The only risk is if inadequately secured keys get compromised. By

encrypting all bank transaction data with strong 256-bit or higher AES keys, the data is secured

even if intercepted during transmission.

To enhance the encryption process, AES is often used alongside other cryptographic algorithms

and compression algorithms, ensuring the secure transformation and exchange of classified

information. In the decryption process, the inverse mix columns and inverse shift rows steps are

executed first. This is followed by the byte substitution step, which uses the inverse Sub Bytes

process to perform the inverse transformation, culminating in inverse multiplication. The final

result is the restoration of the original plaintext.

This research aimed to integrate AES and modified RSA (RSA-SHA-256) encryption algorithms

for data security and employ lossless Huffman encoding for data compression during transmission

in the context of secure banking transactions which will protect sensitive customer information

while optimizing speed and storage capacity.

Statement of the Problem

The rapid advancements in digital banking necessitate the deployment of secure and efficient

encryption techniques to safeguard sensitive transactional data. One of the prevailing challenges

in this domain is the optimization of data compression without compromising security. RSA-AES

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 100

encryption is widely recognized for its robustness but it is typically results in increased file sizes,

which can hinder transmission efficiency and storage capabilities.

Recent publications highlight the potential of integrating Huffman encoding with RSA-AES

encryption to optimize data compression. However, they collectively underscore the need for more

comprehensive evaluations and comparisons particularly in terms of computational efficiency and

applicability across diverse transaction volumes. These limitations could be addressed by

developing and rigorously testing hybrid encryption-compression models that ensure both security

and efficiency in real-world environments. A critical examination using Avalanche Effect,

Compression Time and Decryption and Decompression Time can the true potential of the proposed

system model be realized in secure banking transactions.

Aim and Objectives

The aim of this research is to design, develop, and evaluate a hybrid model for data encryption,

using AES-RSA, and data compression, using Huffman encoding, to enhance banking data

security, and the objectives are:

i. To design a modified RSA encryption algorithm

ii. To develop a hybrid model of data encryption and compression using the modified AES-

RSA and Huffman encoding

iii. To evaluate the performance of the model in comparison to existing models.

LITERATURE REVIEW

Tabassum & Mahmood, (2020), Azharul (2019) propose a dictionary-based compression scheme

using 5-bit encoding for each character, effectively reducing storage requirements for natural

language text. However, the study lacks detailed evaluation data, quantitative results, and

comparisons to other techniques.

Habib et al (2020) also discuss a dictionary-based text compression technique using reduced bit

encoding. Similar to Tabassum and Azharul's study, this paper lacks detailed evaluation and

comparisons, leaving the generalizability to diverse datasets unassessed. Sivanandam, L.,

Sivanandam et al (2020) introduce the Power Transition X Filling and Selective Huffman Coding

encoding techniques, which outperform existing methods in compression efficiency. These

methods reduce application testing time and memory consumption, though product development

constraints affect performance and quality. Kaffah et al (2020) investigate the use of AES and

Huffman compression for encrypting e-mail messages. The AES-Huffman encryption system

achieves high accuracy and performance, but it faces limitations such as vulnerability to hacking

and data leakage, with a constraint of 32,200 characters due to compression.

Herzog et al (2020) explore the impact of evasive techniques used by Windows malware on

antivirus software and possible countermeasures. The study finds that countermeasures can alter

malware behavior, but it notes limitations in the analysis of advanced evasion capabilities. Haldar-

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 101

Iversen, (2020) examines the use of DEFLATE, dictionary coding, and Huffman coding for ASCII

text compression. The study concludes that no method outperforms general-purpose compression

programs, with the ACM algorithm achieving better compression ratios for ASCII-heavy texts.

Gajjala et al (2020) examine Huffman-based encoding techniques for gradient compression in deep

learning, introducing RLH, SH, and SHS encoders. RLH stands out with up to 5.1 times data

volume reduction, though computational complexity and efficiency issues hinder widespread

quantization technique adoption. Ranjin (2020) presents canonical Huffman coding for image

compression using wavelet decomposition and thresholding techniques. The approach efficiently

reduces image file sizes by discarding insignificant coefficients and minimizing the codebook size

through Huffman coding. Taneja & Shukla, (2021)conduct a comparative study between RSA and

an optimized version for enhanced security, emphasizing improved information security and

efficiency with reduced resource requirements during encoding and decoding. However,

challenges in real-world implementation and scalability remain significant.

Agur et al (2020) analyze the growth of digital financial services (DFS) in emerging economies,

noting significant increases in digital lending and remittances. However, scaling DFS during crises

without proper safeguards exacerbates operational and cyber risks and deepens existing societal

divides. Moreover, Sondre (2020) assesses various compression algorithms, including Huffman

coding and DEFLATE, in their ability to improve the security and efficiency of data transmission

in financial institutions. They conclude that while no single compression method outperforms

general-purpose compression programs across all data types,

Wahab et al (2021) propose a hybrid approach combining RSA cryptography with Huffman coding

and discrete wavelet transform (DWT) for data hiding. The method enhances security and achieves

high-quality stego-images, although it lacks comprehensive comparison with other hybrid

compression techniques.

Sandhu, (2021) reviews traditional lossless data compression methods, emphasizing the efficiency

of Huffman and arithmetic coding validated through simulation. Adaptive methods seek to mitigate

the limitations of classical techniques but face challenges in achieving optimal compression

efficiency. Bouguessa et al. (2021) introduce an adaptive Huffman coding technique combined

with chaotic maps for secure data compression. Despite passing NIST randomness tests, the

method exhibits slightly lower compression ratios compared to standard techniques, posing

increased complexity. Rahman & Hamada, (2023) innovate by combining Burrows-Wheeler

transform, GPT-2 language model, and Huffman coding for text compression. However,

challenges such as error sensitivity and comparatively lower compression rates affect its broader

applicability. Grassi et al (2021) explore weak-key distinguishers for AES, extending AES

distinguishers to more rounds but acknowledging limitations due to AES key-schedule properties

and the complexity of chosen-key distinguishers.

Abhilash et al (2023) review the use of RSA and AES encryption methodologies for secure

banking, highlighting their effectiveness in preventing security attacks but also noting specific

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 102

constraints and challenges in real-world implementation. Paavni G. & Ajay K. (2021) discuss AES

image encryption methods, ensuring secure transmission of sensitive data while addressing

complexities in managing large image files and real-time encryption requirements.

Recently, several approaches have been proposed for enhancing data security and efficiency in

various domains. Prasann et al. (2024) conducted an analysis of modern encryption methods,

including AES encryption, Huffman Coding, and LSB Steganography. They reported similar

findings with a focus on enhancing entropy and the Avalanche Effect, while acknowledging

limitations in evaluating specific file types and conducting comprehensive comparisons or

computational overhead evaluations. Abdo et al. (2024) proposed a hybrid approach to secure and

compress data streams within cloud computing environments. Their method aimed to

simultaneously enhance data security, reduce storage space requirements, and optimize data

transmission speeds. They discussed challenges related to scalability, trade-offs between security

and compression efficiency, and computational overhead in resource-constrained cloud

environments.

METHODOLOGY

This section examines the conventional RSA (Rivest-Shamir-Adleman) who’s amongst its

weaknesses are insufficient randomness, V-timing attacks, chosen ciphertext attack (CCA),

vulnerability to quantum computing, and large key size requirement. These limitations arose the

need for robust, light-weight and reliable hybrid system for data key protection.

The Huffman Algorithm

 The basic technique for Huffman encoding involves the following steps:

Step 1: Frequency Calculation

 Let Let S = {s1, s2, sn} ...

(1Error!

No

sequence

specified.)

be the set of symbols in the input data

Let f(si) represent the frequency of symbol si

Compute the frequency for each symbol si in the dataset.

Step 2: Probability Distribution

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 103

The probability of each symbol si is given by

𝑝(si) =

 𝑓(𝑆𝑖)

∑ 𝑓(𝑠𝑗)
𝑛
𝑗=1

...

(2Error!

No

sequence

specified.)

Where ∑ 𝑓(𝑠𝑗)
𝑛
𝑗=1 = 1

Step 3: Building the Huffman Tree

Initialize a min-heap H containing all symbols si with their frequencies f(si).

While there is more than one node in the heap:

Remove the two nodes x and y with the smallest frequencies from the heap.

Create a new node.

 𝑧 with 𝑓(𝑧) = 𝑓(𝑥) + 𝑓(𝑦) ...

(3Error!

No

sequence

specified.)

Insert z back into the heap.

The final node in the heap is the root of the Huffman tree.

Step4: Assigning Codes

Traverse the Huffman tree to assign binary codes:

Moving left adds a '0' to the code.

Moving right adds a '1' to the code.

The code length l(si) for each symbol si is determined by its depth in the tree.

Step 5: Encoding

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 104

The Huffman code for each symbol si minimizes the total cost (expected length) of the encoded

data.

The expected length L of the encoded data is given

 by 𝐿 = ∑ 𝑃(𝑠𝑖) × 𝑙(𝑠𝑖)
𝑛
𝑖=1 ... (4)

Step 6: Optimality

Huffman encoding is optimal for a set of symbols where the goal is to minimize the average code

length, satisfying: H(S) ≤ L < H(S) + 1

Where H(S) is the entropy of the source:

𝐻(𝑠) = ∑𝑃(𝑠𝑖) log 2 𝑝(𝑠𝑖)

𝑛

𝑖=1

... (5)

The Advanced Encryption Standard (AES)

Step 1: Block and Key Size

AES operates on a block size of 128 bits (16 bytes). The key size can be 128, 192, or 256 bits.

Let P represent the plaintext block and C the ciphertext block.

Let K represent the encryption key, where K is 128, 192, or 256 bits.

Step2: State Representation

The plaintext P is arranged into a 4x4 state matrix:

State=

𝑝0,0 𝑝0,1 𝑝0,2 𝑝0,3

𝑝1,0 𝑝1,1 𝑝1,2 𝑝1,3

𝑝2,0 𝑝2,1 𝑝2,2 𝑝2,3

𝑝3,0 𝑝3,1 𝑝3,2 𝑝3,3

Step3: Key Expansion

The key K undergoes a process called key expansion to generate a series of round keys.

Number of rounds Nr is 10, 12, or 14 for 128, 192, or 256-bit keys respectively.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 105

The round keys Wi is derived using the Rijndael key schedule algorithm.

Step4: Initial Round

AddRoundKey:

Each byte of the state is XORed with the corresponding byte of the initial round key W0:

 State = State ⊕ W0 ... (6)

Step5: Main Rounds (Repeated Nr − 1Times)

Each round consists of the following transformations:

SubBytes:

Each byte b in the state matrix is replaced with an entry from an S-Box (substitution box): b′=S(b)

ShiftRows:

Rows of the state are shifted cyclically to the left: Row(r) shifted left by r positions.

MixColumns:

Each column of the state matrix is transformed using a fixed polynomial over GF(28)

[

𝑐0

′

𝑐1
′

𝑐2
′

𝑐3
′]

= [

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

] = [

𝑐0

𝑐1

𝑐2

𝑐3

]

AddRoundKey:

The state matrix is XORed with the round key for the current round:

State= State ⊕ Wi

Step6: Final Round

The final round omits the MixColumns step and only includes:

1. SubBytes

2. ShiftRows

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 106

3. AddRoundKey

Step7: Ciphertext Output

After the final round, the state matrix is transformed back into a linear array, resulting in the

ciphertext C.

Step8: Decryption

AES decryption involves reversing each step using the inverse operations

Inverse SubBytes, Inverse ShiftRows, Inverse MixColumns, and AddRoundKey with round keys

applied in reverse order.

AES relies on complex mathematical structures, such as finite field arithmetic in GF(28) and the

use of S-Boxes for non-linearity, making it resistant to various forms of cryptanalysis.

Figure 1: AES Encryption process Structure (Sruthy, 2024)

The Conventional Rivest Shamir Adleman (RSA)

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 107

Here’s a detailed explanation of the encryption and decryption process.

Step 1: Key Generation

Prime Selection:

Choose two large prime numbers p and q.

Modulus Calculation:

Compute n, the modulus for both the public and private keys

 𝑛 = 𝑝 × 𝑞 ... (1)

Totient Calculation:

Calculate the totient ϕ(n) (Euler's totient function) for n

 ϕ(n) = (p − 1) × (q − 1) ... (2)

Public Key e:

Choose an integer e such that

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1 (i.e., e is coprime to ϕ(n)).

Private Key d:

Calculate d, the modular multiplicative inverse of e modulo ϕ(n)

 D ≡ e−1 mod ϕ(n) ... (3)

This means d satisfies: (d×e) mod ϕ(n)=1

Keys:

Public Key: (e, n)

Private Key: (d, n)

Step 2: Encryption Process

Convert Message to Integer (m)

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 108

Transform the plaintext message into an integer m such that 0 ≤ m < n. This can be done using

various encoding schemes like UTF-8.

Use the public key (e, n) to compute the ciphertext

 C = Me (mod n) ... (5)

Step 3: Decryption Process

Use the private key (d, n) to retrieve the original message m

 M = Cd (mod n) ... (6)

Convert Integer Back to Message

Decode the integer m back to the original plaintext message using the same encoding scheme

applied during encryption.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 109

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 110

Figure 2: RSA Flowchart (Imam et al., 2022).

RSA is a widely used asymmetric encryption algorithm but despite its robustness in secret key

management, RSA has several security weaknesses which include: large key size requirement,

vulnerability to quantum computing, chosen ciphertext attack (CCA), timing attack, and

insufficient randomness. These shortcomings raise alarm of serious concern on strengthening the

algorithm to keep off such threatening threats precisely its vulnerability to quantum computing.

RSA is susceptible to quantum computing attacks, specifically Shor’s algorithm, which can factor

large integers efficiently, potentially breaking RSA encryption.

The proposed system

The proposed hybrid system for data security that integrate compression and encryption techniques

to enhance data security will use Advanced Encryption Standard (AES) to encrypt the data. To

securely distribute the AES key, it is encrypted using the Rivest-Shamir-Adleman (RSA)

algorithm. This layered approach addresses RSA's vulnerability to large data sizes by limiting its

use to encrypting only the AES key, not the entire data. The system then uses Huffman encoding

to compress the cyphertexts for transmission. By compressing the data before encryption, this

system reduces the amount of data being processed, enhancing efficiency and security. AES

provides fast and secure data encryption, while RSA securely manages key exchange its

shortcomings mentioned in section 3.3.3 is anticipated to be overcome buy hashing the message

instead of signing the entire message directly using a secure hash function (SHA-256). The

resulting hash value is then signed using the RSA private key. This will absolutely eliminate the

chance of brute-force attack

System Design

Firstly, the conventional RSA is modified in the following steps;

Modified Rivest Shamir Adleman (RSA)

The process of hashing the massage before encrypting

Step 1: Hash the Message

Compute the hash h of the message M

 h = Hash(M) ... (1)

Step 2: Sign the Hash

Encrypt the hash using the RSA private key d

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 111

 S = hd mod n ... (2)

Step4: Verification

To verify, the recipient decrypts the signature using the RSA public key e to recover the hash, then

compares it with the hash of the received message

 ℎ′ = 𝑆𝑒𝑚𝑜𝑑 𝑛 ... (3)

If ℎ′ matches Hash (M), the signature is valid.

Proposed Hybrid Algorithm

Here is an algorithm integrates AES, RSA with hashing, and Huffman encoding into a single hybrid

cryptographic algorithm.

Step 1: Data Encryption with AES

 Generate AES Key: Generate a random symmetric key KAES for AES encryption.

Encrypt Data: Encrypt the plaintext data P using AES with the generated key KAES

 CAES = AES_Encrypt (KAES, P) ... (4)

Step 2: Encrypt AES Key with Hashed RSA

Hash the AES Key: Hash the AES key KAES using a secure hash function (SHA-256) to get a fixed-

length representation

 H(KAES) = Hash(KAES) ... (5)

RSA Encryption: Encrypt the hashed AES key H(KAES) using the RSA public key (e, n)

 CRSA = (H(KAES))e mod n ... (6)

CRSA is the RSA-encrypted hash of the AES key.

Step 3: Compress Tokens Using Huffman Encoding

Concatenate Ciphertext and RSA Token: Combine CAES and CRSA into a single message for

transmission.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 112

 T = CAES ∥ CRSA ... (7)

∥ denotes concatenation

 Huffman Encoding: Compress the concatenated tokens T using Huffman encoding

 Tcompressed = Huffman_Encode(𝑇) ... (8)

Step 4: Decryption Process on the Recipient's Side

Huffman Decoding:

Decompress the received data using Huffman decoding to retrieve the concatenated tokens T: T =

Huffman_Decode(Tcompressed)

Extract Components:

Split T into CAES and CRSA

RSA Decryption:

Decrypt CRSA the RSA private key (d, n) to retrieve the hashed AES key:

 H(KAES) = (CRSA)d mod 𝑛 ... (9)

AES Key Recovery:

Since the original algorithm encrypts a hash, you must either:

Derive the AES key from the decrypted hash if a deterministic process was used during key

generation.

If a non-deterministic hash was used, store a mapping securely to retrieve the original key

 AES Decryption:

Decrypt CAES using KAES to recover the original plaintext data

 P = AES_Decrypt(KAES,CAES) ... (10)

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 113

Finally, the algorithm entails data encryption (Use AES to encrypt the data with a randomly

generated key), key encryption (Encrypt the hash of the AES key using RSA) and compression

(Compress the resulting ciphertext and RSA-encrypted hash using Huffman encoding)

System Architecture

Figure 3.3 shows the proposed system architecture.

Figure 3: Proposed System Architecture

Working Description of the Model

The first stage of the model operation is data encryption which starts from generating AES keys

associated with its random sample data. The next stage is Encrypting the Data using the AES key,

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 114

we encrypt the actual data you want to protect. This process turns the data into scrambled

information that can only be read if you have the key.

Before we encrypt the AES key, we run it through a hash function (sha-256). Hashing is like

creating a unique fingerprint for the key. It ensures the key is represented in a fixed and secure

way. Now the we take this hashed version of the AES key and encrypt it using RSA a different

kind of encryption method that uses a pair of keys, one for encryption (public key) and one for

decryption (private key). Only the recipient who has the private key can decrypt and access the

AES key.

Compressing the Data Using Huffman Encoding is the next stage which we start by combining

everything. After encrypting the data with AES and the key with RSA we put them together into

one package and to make the package smaller and easier to send, we use Huffman encoding, a

compression technique that reduces the size of the data without losing any information.

The final compressed and encrypted package is sent to the recipient. It's secure, compact, and ready

for transmission.

While the data has been received, the recipient first decompresses the package to get back the

combined encrypted data and the encrypted AES key. Using their RSA private key, the recipient

decrypts the AES key's hashed version. They then use this decrypted information to retrieve the

original AES key. Finally, they use the AES key to decrypt the original data, turning it back into a

readable format.

Model Evaluation Summary

Evaluating the proposed system in involves several structured steps that focus on performance,

security, and efficiency. Here’s an outline of these steps:

Step 1: Implementation of Encryption and Compression Algorithms:

As previously designed in section 3.5, the process begin by implementing the AES (Advanced

Encryption Standard) algorithm for data encryption. AES is typically used for its strong security

properties and efficiency.

Integrate a modified RSA algorithm to secure the AES key, ensuring the encrypted tokens are well-

protected against unauthorized access.

Apply Huffman encoding to compress the AES-RSA encrypted tokens, aiming to reduce data size

for transmission and storage efficiency.

Step 2: Data Collection:

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 115

Use a set of randomly generated strings as test data. For consistency, Python’s Mersenne Twister

library (a widely used random number generator) can be employed to generate these strings, which

will simulate sensitive transaction data that the system is designed to secure and compress.

Step 3: Performance Metrics Evaluation:

Compression Ratio:

Measure the efficiency of the Huffman encoding by calculating the compression ratio, which

indicates how much the data size has been reduced.

Encryption and Compression Time

Track the time taken by the system to perform both encryption (AES and RSA) and compression

(Huffman encoding) steps. This metric is crucial for evaluating the real-time feasibility of the

system.

Decryption and Decompression Time

Evaluate the time needed for decrypting and decompressing the data, ensuring that the retrieval of

original data remains efficient.

Step 4: Security Analysis:

Conduct a Ciphertext Analysis to check if the data remains secure and unreadable without the

necessary keys. AES’s strength, alongside RSA’s public-key encryption, should be validated for

resilience against brute force and chosen ciphertext attacks.

Avalanche Effect Measurement: Assess the avalanche effect, where a small change in the input

should result in significant changes in the output. A strong avalanche effect indicates robust

encryption.

Entropy Calculation: Calculate the entropy of the encrypted data to ensure high randomness,

which contributes to security. High entropy values indicate that the encryption process makes it

difficult for attackers to deduce the original data.

Computational Overhead Analysis:

Analyze the computational resources used by the system, particularly memory and processor

utilization. This analysis is essential for understanding the scalability of the system, especially for

large datasets or high-frequency transaction environments.

Step 5: Comparative Performance Analysis:

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 116

Benchmark the proposed system against existing encryption-compression models (if available).

This involves comparing metrics such as compression ratio, processing time, and resource

utilization to determine the effectiveness of the hybrid AES-RSA-Huffman model over

alternatives.

These steps will provide a comprehensive evaluation of the proposed hybrid encryption-

compression system, ensuring its effectiveness, security, and practicality in banking applications.

RESULT

This chapter presents and discusses the result and findings of the research. Various input text sizes

ranging from 1 kilobyte 1 megabyte were used as input data to test the efficiency of the system.

Figure 4 Authentication Page where user will enter his preferred password for validation

Figure 5 is the AES encrypted password which is the first stage of password token encryption using

advanced encryption standard

Figure 6 shows the 32-bit AES key encrypted using modified RSA with SHA-256.

 Figure 7 shows the Huffmann Binary encoded data to be stored to be converted then stored for

transmission.

Figure 8 shows file encryption-compression time and space report for the modified AES RSA and

Huffman hybrid system.

Table 9 shows the encryption space complexity for the conventional AES RSA and Huffman and

modified system.

Figure 4: Authentication Page

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 117

Figure 5: AES Encrypted Password

Figure 6: Modified RSA Pattern Encrypted AES Key

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 118

 Figure 7: Huffman Encoded Data:

Figure 8: 1 kilobyte Encrypted. File encryption-compression time and space report for

Conventional AES RES and Huffman.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 119

Table 1: Encryption (Space) Complexity

SN Size AES-RSA

Huffman(bytes)

Enhanced AES RSA-SHA-

256 Huffman (bytes)

1. 1024 686.125 724.625

2. 2048 1379.75 1445.375

3. 5120 3456.25 3627.125

4. 10240 6897.375 7253.125

5. 20480 13796.875 14511.5

6. 51200 34442.125 36275.5

7. 102400 68900.0 72558.0

8. 204800 137888.75 145110.95

9. 512000 344597.75 362782.875

10. 1055670 710337.75 747964.875

Table 2: Encryption Time Complexity

SN Size on Disk AES-RSA

Huffman(seconds)

Enhanced AES RSA-SHA-

256 Huffman (seconds)

1. 1024 0.149950 0.001003

2. 2048 0.290410 0.216592

3. 5120 0.757891 0.789130

4. 10240 1.468064 1.764096

5. 20480 2.716959 2.969311

6. 51200 7.007834 7.244300

7. 102400 13.737787 14.286484

8. 204800 28.177013 27.328622

9. 512000 72.648272 72.406702

10. 1055670 141.920079 147.832119

Table 3: Security Strength (Avalanche Effect)

SN Size on Disk AES RSA Huffman

Encoding

Modified AES RSA SHA-

256 Huffman Encoding

1. 1024 0.80886 0.8245

2. 2048 0.79454 0.8187

3. 5120 0.78789 0.8065

4. 10240 0.78005 0.7965

5. 20480 0.72988 0.7856

6. 51200 0.71688 0.7755

7. 102400 0.697546 0.7697

8. 204800 0.691254 0.7531

9. 512000 0.68755 0.7478

10. 1055670 0.68440 0.7354

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 120

Figure 9: Data Encryption Space Comparison

Figure 10: Data Encryption Time Comparison

0

100000

200000

300000

400000

500000

600000

700000

800000

Encryption space comparison

AES-RSA Huffman(bytes) Enhanced AES RSA-SHA-256 Huffman (bytes)

0

100000

200000

300000

400000

500000

600000

700000

800000

Encryption Time

AES-RSA Huffman(bytes) Enhanced AES RSA-SHA-256 Huffman (bytes)

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 121

Figure 11: Data Encryption Security Strength Comparison

Table 4: Testing Machine

SN Description Value

1.
Processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.71 GHz

2.
Installed RAM 16.0 GB (15.9 GB usable)

3. CPU Cores 4 Logical Processor(s)

4. Local Disk SSD 1TB

5.
Local Disk Location Bus Number 1, Target Id 0, LUN 0

6. OS Name Microsoft Windows 11 Pro

7. Version 10.0.22621 Build 22621

8. System Manufacturer HP

9. SMBIOS Version 2.8

10. BIOS Mode Lagacy

11. Base-Board Version 83.14

12.
System Type 64-bit operating system, x64-based processor

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 122

RESULT DISCUSSION

Figure 4 represents the authentication interface where the user enters their preferred password for

validation. This stage is crucial as it serves as the entry point for securing data within the system.

The authentication mechanism ensures that only authorized users can access encryption and

decryption functions, reinforcing the confidentiality of sensitive information. Given that the

system integrates AES and RSA encryption, the password may also play a role in key derivation

and management ensuring a secure foundation for subsequent encryption processes.

The authentication page’s design is a fundamental aspect of cybersecurity as weak authentication

mechanisms can compromise the entire encryption framework. The system’s ability to validate

user credentials securely without exposing sensitive data is crucial. If multi-factor authentication

(MFA) or additional security layers were incorporated the system’s resilience against attacks such

as quantum attempts and credential stuffing would significantly improve. The strength of the

authentication phase ultimately dictates the security of the encryption process that follows.

Figure 5 displays the result of encrypting the user’s password using the Advanced Encryption

Standard (AES). AES is a widely used symmetric encryption algorithm known for its heftiness and

efficiency. The encryption of the password before any further processing ensures that the plaintext

credentials are not stored or transmitted in an unprotected form, mitigating risks associated with

password leaks. Given that AES operates in different modes (e.g., ECB, CBC, GCM), the chosen

mode impacts both security and performance.

Figure 6 showcases the AES key encrypted using the modified RSA algorithm, incorporating SHA-

256. In this approach, instead of encrypting the AES key directly, SHA-256 is first applied to

generate a hash, which is then encrypted using RSA. This method enhances security by reducing

direct exposure of the AES key in its raw form, adding a cryptographic layer that ensures integrity

and resistance to key-recovery attacks. Since RSA is traditionally vulnerable to certain attacks

when encrypting small keys the use of SHA-256 addresses these concerns by increasing

randomness in the ciphertext.

The integration of SHA-256 with RSA encryption enhances security by preventing attackers from

easily reconstructing the original AES key, even if partial information about the encrypted key is

exposed. The approach also introduces a challenge regarding key management, as decrypting the

AES key requires both the RSA private key and knowledge of the hashing mechanism. While this

modification adds an additional processing step, the security benefits outweigh the computational

overhead, making it a viable improvement over conventional RSA encryption methods.

Figure 7 depicts the application of Huffman encoding, a lossless data compression technique.

Huffman encoding optimizes storage efficiency by assigning shorter binary codes to more

frequently occurring characters in the data. This step is particularly useful in an encryption system

because it reduces the size of encrypted data before transmission or storage, thereby improving

overall efficiency. By incorporating Huffman encoding, the system achieves better space

utilization without compromising data integrity or security.

In this encryption framework, Huffman encoding complements AES and RSA by ensuring that

encrypted data occupies minimal storage space while maintaining recoverability. Since Huffman

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 123

encoding is reversible, the original data can be reconstructed without loss after decryption.

However, the effectiveness of this approach depends on the entropy of the input data—highly

random data may not compress significantly. Nevertheless, this step provides additional

optimization, making the hybrid system more efficient in handling encrypted files.

Figure 8 presents an analysis of encryption and compression times for the conventional AES-RSA-

Huffman system versus the modified AES-RSA-SHA-256-Huffman system. The report measures

the efficiency of each method in terms of computational time and space utilization. The results

indicate that while the modified system introduces slight increases in processing time due to

additional hashing operations, it provides a more secure encryption framework. The trade-off

between security and computational efficiency is a key consideration in encryption system design.

The findings suggest that the enhanced system remains practical for real-world applications, as the

increased encryption time does not significantly impact usability. The space utilization report also

demonstrates that while Huffman encoding contributes to compression, the added cryptographic

steps slightly increase the final storage requirements. Overall, the modifications provide stronger

security with a manageable increase in computational overhead, making the system a viable

enhancement over conventional methods.

Table 1 compares the space complexity of the conventional AES-RSA-Huffman system and the

modified AES-RSA-SHA-256-Huffman system across different file sizes. The results show that

while both systems maintain reasonable storage footprints, the modified system requires slightly

more space due to the additional SHA-256 hashing step. For instance, for a 1,024-byte file, the

conventional system requires 686.125 bytes, while the modified system uses 724.625 bytes. This

pattern is consistent across all file sizes, with the space requirement increasing proportionally.

The additional storage overhead is a result of the SHA-256 hashing step, which expands the

ciphertext before RSA encryption. Although this increases the storage requirement slightly, the

trade-off for improved security is justifiable. The increase in space is not exponential, meaning

that for most practical applications, the modified system remains an efficient choice. The slight

increase in space usage ensures better protection against cryptographic attacks while maintaining

reasonable storage efficiency.

Table 2 evaluates the encryption time complexity of the two encryption models. The results

indicate that for smaller file sizes (e.g., 1,024 bytes), the modified system encrypts data in less than

a millisecond, showcasing negligible performance impact. However, as file sizes increase, the

additional hashing step causes a slight increase in encryption time. For instance, a 512 KB file is

encrypted in 72.40 seconds using the modified system, compared to 72.64 seconds for the

conventional system.

The results demonstrate that while the enhanced system has a slight time overhead, the increase is

not substantial enough to hinder performance. The hashing operation adds a predictable delay, but

its impact diminishes at larger file sizes due to parallel processing and optimization in modern

processors. This finding suggests that the modified approach is practical for real-world

applications where security is a priority, as the encryption delay is not excessive.

Table 3 measures the security strength of both encryption models using the avalanche effect an

indicator of how much the ciphertext changes when a single bit in the plaintext is altered. The

results show that the modified AES-RSA-SHA-256-Huffman system has a higher avalanche effect

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 124

across all file sizes. For instance, at 1,024 bytes, the conventional system records an avalanche

effect of 0.80886, while the modified system achieves 0.8245. This trend continues across larger

files, with the modified system consistently demonstrating superior security.

A higher avalanche effect indicates stronger diffusion properties, meaning small changes in input

data result in significantly different ciphertexts. This enhances resistance against differential

cryptanalysis attacks, making the modified system more stronger. The improvement in security

strength justifies the minor increases in encryption time and space complexity as the system

provides a stronger defense against cryptographic attacks while maintaining reasonable

performance.

Figures 9, 10, and 11 illustrate the space, time, and security comparisons between the conventional

and modified encryption systems. These visual comparisons reinforce the tabular findings,

demonstrating the trade-offs between security and performance. Figure 4.6 highlights the slight

increase in storage space required by the modified system. Figure 4.7 showcases the minimal

increase in encryption time, while Figure 4.8 confirms the improved security strength.

Table 4 provides the specifications of the testing environment, which is crucial for evaluating

encryption performance. The system is equipped with an Intel Core i5 processor, 16GB RAM, and

an SSD, ensuring that encryption operations are tested on a capable platform. These specifications

suggest that the results may vary on lower-end devices, but the overall trend of efficiency versus

security should remain consistent.

CONCLUSION

The findings of this research confirm that the combination of modified RSA with SHA-256, AES

encryption, and Huffman encoding provides an effective security framework for banking

transactions. The study demonstrates that integrating SHA-256 into RSA encryption enhances the

protection of AES keys, making brute-force and cryptanalytic attacks more difficult. Although the

space and computational time increased marginally compared to conventional models, the security

improvement outweighs the added complexity.

Furthermore, Huffman encoding effectively compresses encrypted transaction data, optimizing

storage and transmission efficiency. This ensures that banking institutions can secure sensitive data

while reducing processing time and costs associated with data transmission and storage. The

experimental results validate that the proposed hybrid model achieves a balance between security

and performance, making it suitable for real-world applications where security, speed, and storage

efficiency are critical.

 RECOMMENDATION

Based on the study findings, the following recommendations are made:

1. Adoption in Banking Systems – Financial institutions should consider integrating the

proposed hybrid encryption-compression model into their security architecture to enhance the

protection of sensitive banking transactions.

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 125

2. Further Performance Optimization – Future research should focus on optimizing the

computational efficiency of the RSA-SHA-256 encryption process to minimize the slight

increase in encryption time.

3. Implementation in Real-World Transactions – The hybrid model should be tested in live

banking environments to assess its effectiveness under real-time transaction loads and varying

network conditions.

4. Integration with Emerging Technologies – The model should be explored for use in

blockchain-based banking transactions and IoT-enabled financial systems to enhance security

in decentralized financial networks.

5. Multi-Factor Authentication Enhancement – The encryption model should be combined

with biometric authentication methods to create a more robust security framework for banking

applications.

REFERENCES

Abhilash, A., Shenoy, S. S., & Shetty, D. K. (2023). Overview of Corporate Governance Research

in India: A Bibliometric Analysis. Cogent Business & Management, 10(1), 2182361.

https://doi.org/10.1080/23311975.2023.2182361

Agur, I., Peria, S. M., & Rochon, C. (2020). Digital financial services and the pandemic:

Opportunities and risks for emerging and developing economies. International Monetary

Fund Special Series on COVID-19, Transactions, 1, 2–1.

https://www.imf.org/~/media/Files/Publications/covid19-special-notes/en-special-series-

on-covid-19-digital-financial-services-and-the-

pandemic.ashx?la=en&utm_medium=email&utm_source=govdelivery

Ajagbe, S. A., Adeniji, O. D., Olayiwola, A. A., & Abiona, S. F. (2024). Advanced Encryption

Standard (AES)-Based Text Encryption for Near Field Communication (NFC) Using

Huffman Compression. SN Computer Science, 5(1), 156. https://doi.org/10.1007/s42979-

023-02486-6

Alenizi, A., Mohammadi, M. S., Al-Hajji, A. A., & Ansari, A. S. (2024). A Review of Image

Steganography Based on Multiple Hashing Algorithm. Computers, Materials & Continua,

80(2). https://www.researchgate.net/profile/Arshiya-Ansari-

2/publication/382661222_A_Review_of_Image_Steganography_Based_on_Multiple_Ha

shing_Algorithm/links/66c0d7db145f4d355361f107/A-Review-of-Image-Steganography-

Based-on-Multiple-Hashing-Algorithm.pdf

Altigani, A., Hasan, S., Barry, B., Naserelden, S., Elsadig, M. A., & Elshoush, H. T. (2021). A

polymorphic advanced encryption standard–a novel approach. IEEE Access, 9, 20191–

20207. https://ieeexplore.ieee.org/abstract/document/9321317/

Andersson, M. (2023). Optimizing the computation of password hashes.

https://helda.helsinki.fi/server/api/core/bitstreams/23a37f74-a162-4473-b894-

5da77f0627d1/content

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 126

Ashila, M. R., Atikah, N., Rachmawanto, E. H., & Sari, C. A. (2019). Hybrid AES-Huffman coding

for secure lossless transmission. 2019 Fourth International Conference on Informatics and

Computing (ICIC), 1–5. https://ieeexplore.ieee.org/abstract/document/8985899/

Erdal, E., & Ergüzen, A. (2019). An efficient encoding algorithm using local path on huffman

encoding algorithm for compression. Applied Sciences, 9(4), 782.

https://www.mdpi.com/2076-3417/9/4/782

Gajjala, R. R., Banchhor, S., Abdelmoniem, A. M., Dutta, A., Canini, M., & Kalnis, P. (2020).

Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning.

Proceedings of the 1st Workshop on Distributed Machine Learning, 21–27.

https://doi.org/10.1145/3426745.3431334

Grassi, L., Leander, G., Rechberger, C., Tezcan, C., & Wiemer, F. (2021). Weak-Key

Distinguishers for AES. In O. Dunkelman, M. J. Jacobson, & C. O’Flynn (Eds.), Selected

Areas in Cryptography (Vol. 12804, pp. 141–170). Springer International Publishing.

https://doi.org/10.1007/978-3-030-81652-0_6

Habib, A., Islam, M. J., & Rahman, M. S. (2020). A dictionary-based text compression technique

using quaternary code. Iran Journal of Computer Science, 3(3), 127–136.

https://doi.org/10.1007/s42044-019-00047-w

Haldar-Iversen, S. (2020). Improving the text compression ratio for ASCII text Using a

combination of dictionary coding, ASCII compression, and Huffman coding [Master’s

Thesis, UiT Norges arktiske universitet]. https://munin.uit.no/handle/10037/20517

Haryaman, A., Amrita, N. D. A., & Redjeki, F. (2024). SECURE AND INCLUSIVE

UTILIZATION OF SHARED DATA POTENTIAL WITH MULTI-KEY

HOMOMORPHIC ENCRYPTION IN BANKING INDUSTRY. Journal of Economics,

Accounting, Business, Management, Engineering and Society, 1(9), 1–13.

http://kisainstitute.com/index.php/kisainstitute/article/view/36

Herzog, C., Tong, V. V. T., Wilke, P., van Straaten, A., & Lanet, J.-L. (2020). Evasive Windows

Malware: Impact on Antiviruses and Possible Countermeasures. Proceedings of the 17th

International Joint Conference on E-Business and Telecommunications, 302–309.

https://doi.org/10.5220/0009816703020309

Islam, M., Nurain, N., Kaykobad, M., Chellappan, S., & Islam, A. B. M. A. A. (2019). HEliOS:

Huffman coding based lightweight encryption scheme for data transmission. Proceedings

of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services, 70–79. https://doi.org/10.1145/3360774.3360829

Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Khan, S. (2022). A review of Blockchain

Technology applications for financial services. BenchCouncil Transactions on

Benchmarks, Standards and Evaluations, 2(3), 100073.

https://www.sciencedirect.com/science/article/pii/S2772485922000606

Kaffah, F. M., Gerhana, Y. A., Huda, I. M., Rahman, A., Manaf, K., & Subaeki, B. (2020). E-mail

message encryption using Advanced Encryption Standard (AES) and Huffman

compression engineering. 2020 6th International Conference on Wireless and Telematics

(ICWT), 1–6. https://ieeexplore.ieee.org/abstract/document/9243651/

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 127

Kaur, P., Kaur, R., Kaur, A., & Sharma, V. K. (2023). Privacy Preservation and Secured Data

Storage on Cloud Using Encryption Algorithms. 2023 International Conference on

Advances in Computation, Communication and Information Technology (ICAICCIT),

1374–1378. https://ieeexplore.ieee.org/abstract/document/10465702/

Kishor Kumar, R., Yogesh, M. H., Raghavendra Prasad, K., Sharankumar, & Sabareesh, S. (2024).

256-Bit AES Encryption Using SubBytes Blocks Optimisation. In V. K. Gunjan, A. Kumar,

J. M. Zurada, & S. N. Singh (Eds.), Computational Intelligence in Machine Learning (Vol.

1106, pp. 621–628). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7954-

7_56

Kumar, M. R. R., Josna, B. A., Lawvanyaa, R., & Shruthi, S. (2023). ADVANCED SECURITY

USING ENCRYPTION, COMPRESSION AND STEGANOGRAPHY TECHNIQUES.

https://www.academia.edu/download/104182962/IRJET_V10I603.pdf

Nidhi, M., & Kadam, S. A. (n.d.). A STUDY OF ACADEMIC INSTITUTION’S DIGITAL

CERTIFICATES PREFERENCES FOR WEBSITE SECURITY. Retrieved October 25,

2024, from https://www.researchgate.net/profile/Sachin-Kadam-

14/publication/362518466_A_STUDY_OF_ACADEMIC_INSTITUTION'S_DIGITAL_

CERTIFICATES_PREFERENCES_FOR_WEBSITE_SECURITY/links/634ea41112cbac

6a3ed72f91/A-STUDY-OF-ACADEMIC-INSTITUTIONS-DIGITAL-CERTIFICATES-

PREFERENCES-FOR-WEBSITE-SECURITY.pdf

Prasanna, R., Prathaban, B. P., Jenath, M., Rajendran, S., & Ashokkumar, M. (2024).

Computational framework for human detection through improved ultra-wide band radar

system. International Journal for Multiscale Computational Engineering, 22(1).

https://www.dl.begellhouse.com/journals/61fd1b191cf7e96f,6129d44f1682fc8e,1e068d4

e5c88fe0e.html

Rahman, Md. A., & Hamada, M. (2023). A prediction-based lossless image compression procedure

using dimension reduction and Huffman coding. Multimedia Tools and Applications, 82(3),

4081–4105. https://doi.org/10.1007/s11042-022-13283-3

Reza, M. S., Riya, S. A., Alam, S. A., & Hossain, M. A. A. (2019). Study on Text Compression

[PhD Thesis, United International University]. http://dspace.uiu.ac.bd/handle/52243/822

Rivera, C., Di, S., Tian, J., Yu, X., Tao, D., & Cappello, F. (2022). Optimizing huffman decoding

for error-bounded lossy compression on gpus. 2022 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 717–727.

https://ieeexplore.ieee.org/abstract/document/9820677/

SANDHU, S. (2021). LOSSLESS DATA COMPRESSION: AN OVERVIEW.

https://www.ubishops.ca/wp-content/uploads/sandhu20211029.pdf

Sari, C. A., Ardiansyah, G., & Rachmawanto, E. H. (2019). An improved security and message

capacity using AES and Huffman coding on image steganography. ℡KOMNIKA

(Telecommunication Computing Electronics and Control), 17(5), 2400–2409.

http://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/9570

Sivanandam, L., Periyasamy, S., & Oorkavalan, U. M. (2020). Power transition X filling based

selective Huffman encoding technique for test-data compression and Scan Power

http://www.iiardjournals.org/

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699

P-ISSN 2695-1924 Vol 11. No.3 2025 www.iiardjournals.org online version

 IIARD – International Institute of Academic Research and Development

Page 128

Reduction for SOCs. Microprocessors and Microsystems, 72, 102937.

https://www.sciencedirect.com/science/article/pii/S0141933119304399

Smid, M. E. (2021). Development of the advanced encryption standard. Journal of Research of the

National Institute of Standards and Technology, 126.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682931/

Tabassum, T., & Mahmood, M. A. (2020). A multi-layer data encryption and decryption

mechanism employing cryptography and steganography. 2020 Emerging Technology in

Computing, Communication and Electronics (ETCCE), 1–6.

https://ieeexplore.ieee.org/abstract/document/9350908/

Taneja, A., & Shukla, R. K. (2021). Comparative Study of RSA with Optimized RSA to Enhance

Security. In A. Kumar & S. Mozar (Eds.), ICCCE 2020 (Vol. 698, pp. 975–996). Springer

Nature Singapore. https://doi.org/10.1007/978-981-15-7961-5_91

Wahab, O. F. A., Khalaf, A. A., Hussein, A. I., & Hamed, H. F. (2021). Hiding data using efficient

combination of RSA cryptography, and compression steganography techniques. IEEE

Access, 9, 31805–31815. https://ieeexplore.ieee.org/abstract/document/9356603/

Yusuf, A. Y., Gambo, F. L., Shin, H., & Miyim, A. M. (2023). Hybrid Encryption of ElGamal-AES

with Huffman Coding for Efficient Data Communication. The Journal of Contents

Computing, 5(2), 685–697.

https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11660967

http://www.iiardjournals.org/

